
CHAPTER 2

Nature-Inspired Optimization Techniques

The general nonlinear programming problem can be stated by

Optimize f(~x), ~x ∈ RN

Subject to ~g(~x) ≤ 0 (2.1)

where the function f(·) is the fitness function, ~x is the design variable vector, and ~g(~x) are possible

constraint equations [65]. This mathematical problem is often seen in many scientific circles, and

therefore its widespread applicability has stirred interest in many different communities. Over

the past few decades there have been many approaches proposed for solving this problem, but

to this date there has been no such algorithm that is able to solve every problem. The classical

techniques are quite useful in solving this problem, and they converge rapidly onto the optima.

One of the primary issues is that they often require the fitness function gradient, which may not

be available. These techniques are also highly dependent on their initialization [65]. Typically

these techniques will converge onto the optimum in the neighborhood of their initial test point.

This may or may not be the global optimum, and therefore one must have a priori knowledge of

the fitness function in order to have global convergence with these techniques. These techniques

are often termed local optimization techniques due to their likelihood to find local optima. On

the other hand, nature-inspired optimization techniques are placed in the category of global

optimizers. They often mimic particular operations observed in nature, hence the name. They

also are classified as stochastic optimization techniques due to their use of random numbers

within the algorithm, which aids them in conducting a global search. These nature-inspired

optimization techniques have gained interest due to their demonstrated robustness for the global

22

optimization problem in many different research areas. It has only been recently that they have

become popular in the microwave and antenna engineering community.

The explosive growth of computing technology and the development of numerical methods in

electromagnetics has enabled the use of these nature-inspired optimization techniques to provide

final antenna design solutions. Naturally, one might ask what their advantages are in comparison

to trial-and-error techniques and the classical optimization techniques such as Newton’s method

or the simplex technique. The typical advantages that these techniques provide are given in the

following:

• Derivatives are not required

• Naturally suited for parallel processing

• Converge on a global extrema

• Both continuous or discrete parameters can be used

• A priori knowledge of the fitness function topology is not necessary

• Highly multi-dimensional and multi-objective problems can be solved

In electromagnetic problems the fitness functions are typically multimodal, non-differentiable,

highly dimensional, non-convex, nonlinear, discontinuous, and ill-conditioned, which make the

problem difficult for any optimization technique. Unimodal functions typically have one optimum

point where ∇f = 0, whereas multimodal problems can have a multitude of local optima. These

multimodal functions can be quite difficult to optimize globally, and many techniques can have

issues of premature convergence where the optimizer settles on a local optimum as opposed to

the global optimum. Functions such as the 2-dimensional Rosenbrock function are unimodal

[66], while other functions such as the Griewank function are multimodal [67]. A 2D version of

these functions are plotted in Figure 2.1. As illustrated, there are many more local minima and

maxima for the multimodal case whereas there exists only one minimum in the unimodal case.

More detail on these functions will be provided in Chapter 3.

While the Rosenbrock function happens to be unimodal, it is still a difficult problem to

23

x
y

f(
x,
y)

-2

0

2

-2

0

2

0

2000

4000

(a) Unimodal Rosenbrock function

x
y

f(
x,
y)

-10

0

10

-10

0

10

0

1

2

3

(b) Multimodal Griewank function

Figure 2.1: Illustration in the differences between Unimodal and Multimodal functions for
optimization

solve due to the narrow ridge-like topology. This condition is often known as an ill-conditioned

optimization problem, where the Hessian matrix has a high condition number [68]. For many

problems, an ill-conditioned Hessian matrix implies that the gradient does not supply enough

information to predict the location of the optimum. This can make it difficult for gradient

based algorithms which depend solely on the gradient of the function. Even further, most fitness

functions are non-differentiable and make it even more difficult on gradient based optimization

techniques to find the global optimum. Therefore, these nature-inspired techniques have become

popular among many different research fronts, especially electromagnetics. In order to overcome

these issues, the nature-inspired algorithms often have two phases: global optimization versus

local optimization. The whole search space must be properly sampled if the algorithm is to

find the global optima. Without a good global optimization phase, the optimizer will likely

converge to a local optimum point as opposed to a global optimum. Once the full search space

has been properly sampled, the algorithm starts decreasing the amount of change given in the

next test point compared to the last iteration. By decreasing these step sizes, the optimizer is

effectively performing a fine search among the local area. This is the point where most of the

test points are in the neighborhood of the global optimum. The transition between global versus

local optimization is typically smooth; there does not exist a threshold in which the optimizer

suddenly switches over to local optimization. Each algorithm has its own way of shifting from a

global to a local one, and each have their own advantages. The main difficulty for the algorithm

24

is in finding the best parameters which work for all fitness function topologies, and many years

of research has been spent in developing the most robust optimization algorithm by fine-tuning

their intrinsic parameters. Some researchers have also discussed the possibility of hybridizing the

global optimizers with the classical (local) optimization techniques in order to exploit the rapid

convergence of the classical techniques when the optimization run is in the local optimization

stage.

Since a few algorithms will be discussed throughout this thesis, a proper terminology must be

established. Therefore we provide the following list of terms below which we will use to describe

certain aspects of the optimization problem shown at the beginning of this chapter.

Intrinsic Parameters

Parameters that are used by the optimization algorithm and characterize the algorithm’s

performance and convergence. This includes parameters that change throughout the opti-

mization run as well as those that remain constant.

Design Variables

These are the N variables that characterize the antenna design geometry that is being

optimized (e.g. the length and width of a simple patch antenna). Each set of values for

the design values represents a possible design, and we will be representing this with the

design vector ~x.

Design Boundaries

For bounded optimization techniques, one must provide the lower and upper bounds of

each design variable. These bounds are denoted by the ~xmin and ~xmax variables.

Design Constraints

For many optimization problems, constraints are required in order to abstain from simulat-

ing physically unrealizable solutions. Constraints may also be given as part of a specifica-

tion and therefore must be incorporated into the optimization algorithm. These constraint

equations are denoted by ~g(~x) ≤ 0 as seen in the problem definition and are discussed more

in detail in Section 2.3.

Solution Coordinates

This is a N -dimensional coordinate system whose components are the design variables. For

example, the length, width, and height of a patch antenna are represented by the 3-tuple

(L,W, h) which is the location in the solution coordinate system.

Solution Space

The solution space is a N -dimensional hypercube in the solution coordinate system which

is defined by the limits of each design variable. This is only applicable to bounded opti-

25

mization techniques. For unbounded algorithms, the solution space is infinitely large. For

most bounded optimization techniques, no solution outside of the solution space will be

tested. This space will be denoted mathematically as the set S = {~x|~xmin ≤ ~x ≤ ~xmax}.

Feasible Space

While the design boundaries define the solution space S, the design constraints define the

feasible space F ⊆ S. This is defined as the space where the design constraints are satisfied,

i.e. F = {~x |~g(~x) ≤ 0, ~xmin ≤ ~x ≤ ~xmax}. More detail will be given in Section 2.3.

Fitness Function

As mentioned previously in Section 1.2, the fitness function defines the link between the

antenna system and the optimizer. This function maps the quality and performance into a

single number which allows the optimizer to decide whether a given design is better than

others.

Penalty Function

This term is introduced into the fitness function in order to account for constraints or for

boundaries. The constraint penalty function will be denoted at pc(~x) and the boundary

penalty function will be denoted as pb(~x). These are also discussed more in detail in

Section 2.3.

This given terminology will be used throughout the rest of the text in order to remove any

ambiguities. It should be noted that not all optimizations have constraints ~g(~x), and they are

referred to as unconstrained optimization problems. However, if constraints are included then

the problem is designated as a constrained optimization problem.

The idea of constraints is slightly different than that of bounded optimization techniques.

Some techniques such as Particle Swarm Optimization require upper (~xmax) and lower (~xmin)

boundaries on the design variables. These are denoted as bounded optimization techniques. The

other case are those that do not require upper and lower boundaries, which are the unbounded

optimization techniques. While bounded techniques are limited to the specified solution space,

it is often the case in electromagnetic optimization problems that boundaries are provided by

the nature of the problem. Therefore, the global optimum within those boundaries is the only

one of interest because other possible optimum points outside the solution space are unusable

designs.

Multi-objective optimization is also a topic of interest in the optimization community, and

this presents an even more difficult optimization problem. In the case of multi-objectives, a

26

Local Global

Quasi-Newton Method

Conjugate Gradient Methods

Gauss-Newton Method

Simplex

Darwinian Methods

Particle Swarm Optimization

Interior-point Methods

Optimization

Differential Evolution

-

Darwinian Methods

Simulated Annealing

Evolutionary Programming

Evolutionary Strategies

Genetic Algorithms

Ant Colony Optimization

Invasive Weed Optimization

-

Optimization

Figure 2.2: A short list of different optimization algorithms and their classification

vector is returned rather than a single number. This characterization makes it more complex

to characterize better designs from others. For multi-objective problems a final set of superior

designs, or Pareto front, is provided as the final output of the optimizer. The Pareto front

concept allows designers to make a choice when faced with multi-objective designs. The only

issue with multi-objective optimization is that it can take a significant amount of time to solve

in comparison to its single-objective counterpart. Therefore, our approach to the optimization

problems in this thesis are to wrap the multi-objectives into one fitness function by

f(~x) =
P∑
p=1

αpfp(~x) (2.2)

where f(·) is the final fitness function, fp(·) is the pth objective, and αp is the proportionality

constants. The only difficulty in this approach is to find the appropriate weights αp,∀p ∈

1, . . . , P . There is no hard and fast rule to provide these coefficients, and our approach has been

to equate the ratio of each weight to the ratio of the expected average values of the objectives.

This will be demonstrated in later chapters.

Some of the first nature-inspired optimization algorithms were first investigated in the 1960’s,

which included Genetic Algorithms, Evolutionary Strategies, and Evolutionary Programming.

27

Since then, many more algorithms have been proposed, and these algorithms are shown in Figure

2.2. Some of these have their merits, and the techniques Particle Swarm Optimization (PSO)

and Evolutionary Strategies (ES) will be covered in this thesis. More specifically, the Covariance

Matrix Adaptation Evolutionary Strategies (CMAES) will be examined in detail. Afterwards,

a detailed discussion on constrained optimization problems will be given. The convergence of

nature-inspired optimization techniques will be covered, and then this chapter will close with

implementation of these algorithms.

2.1 Particle Swarm Optimization (PSO)

While many nature-inspired optimization techniques have been proposed to the scientific com-

munity, most of these algorithms rely on the use of complicated operators (or mechanisms) which

mimic naturally occuring processes. However, the Particle Swarm Optimization (PSO) technique

uses very simple operators. In particular, PSO exploits the power of social interactions as its

primary operator, and the use of this mechanism lends to an inherent algorithmic simplicity.

This simplicity implies that only a minimal number of intrinsic parameters need to be defined

by the user. The recommended values for the fastest and guaranteed global convergence are

also typically more obvious. For PSO, no a priori knowledge of the fitness function landscape

is necessary to have global convergence, and therefore one does not have to choose arbitrary

values for its intrinsic parameters. This and its widely proven use in electromagnetics problems

make PSO one of the leading candidates for global optimization techniques in electromagnetics

applications.

Many scientists have made observations and experimental models aiming to predict the social

behavior of large groups of animals seen in nature. The most prominent groups include bird

flocks and bee swarms. Russell and Eberhart, among many other scientists, tried to develop

working models that would graphically demonstrate similar properties to the dynamics of a bird

flock formation [69]. Their revolutionary idea came when implementing a model for a bird flock

which incorporated two forces acting on each individual in the flock. Both of these forces are

derived from the individual’s memory, which includes a memory of the best point visited by

28

that particular individual as well as a memory of the best point visited by the whole bird flock.

The first force drove each individual back to its own best observed point, and this has often

been termed the cognizant drive. The second drives each individual to the best seen point of

the flock, which has been termed the social drive. These driving forces are depicted in Figure

2.3. In the figure, each marked point shows the visited points for each bird. Note that the

motion of the birds is simulated by finite jumps in space. In other words, the birds are shifted

by randomized increments such that its flight (and tested points) are not continuous lines but

rather points in space. The figure also provides the location of each birds own best personally

visited point (pBest) and the best visited point of the flock (gBest) with blue circles and green

stars, respectively. One may ask what characteristic defines one point better than another and

how do these simulated birds know the difference. In their simulation they used the function

f (x, y) =

√
(x− xfood)2 +

√
(y − yfood)2 (2.3)

in order for each bird (or agent) to evaluate its current position (x, y) in space. The (xfood, yfood)

point represents the location of food that the birds are flying towards. They did this to simulate

a bird flock being driven towards food without prior knowledge of its location. For bird 4, one

can see its total velocity ~vtotal decomposed into the two driving forces. The vector ~vp points

towards bird 4’s previously best visited point, and ~vg points towards the best visited point

of the flock. By combining these two vectors, one can see that it redirects bird 4 to explore

new appealing territory. Russell and Eberhart started their experiments with the intention to

model a bird flock’s movement, but in the end they had discovered a remarkable technique that

seemed to optimize general nonlinear functions such as the one in equation 2.3. Interestingly, the

authors chose the name Particle Swarm Optimization because the group reflected more swarm-

like characteristics with each individual moving in a quasi-random fashion. Therefore, the group

of individuals is typically referred to as the swarm. Also, the term particle (or agent) is often

used to describe the individuals in the swarm due to their point-like nature which retains velocity

and acceleration.

From observations made to describe this social behavior, it has been conjectured that the

29

Previously Visited Point

past history

Best visited

point by Bird 2

Best visited point

of the flock

d1

d2

Bird 4

Bird 2
Bird 1

Bird 3

Personal Best Visited

Point (pBest)

Global Best Visited

Point (gBest)

Bird 2's

pv
totalv

gv

Figure 2.3: A graphical depiction of Kennedy and Eberhart’s original simulation model which
inspired Particle Swarm Optimization

collective intelligence of the swarm directs them towards the most prominent feeding location.

With the gradual acceptance of these conclusions, one might be able to apply these social inter-

actions to more general nonlinear, multimodal, and even non-differentiable functions. Research

since the original discovery in 1995 towards progressing the algorithm has skyrocketed due to

its proven use in many types of problems. Later, this algorithm was formally introduced to

the electromagnetics and antenna community in 2004 [70]. That particular paper explained the

PSO algorithm using a bee swarm metaphor, which is another well-used analogy seen in the

literature. Since this time, many students within the Antenna Research, Analysis, and Mea-

surement laboratory at UCLA have researched different applications of PSO [51, 71] as well as

comparisons to other algorithms, such as GA. There have been much improvements to the PSO

algorithm in recent years, but this particular optimization technique is still in its infancy and

there exists many more areas of exciting research in its improvement. There now exist several

popular variations of PSO which can handle different types of problems encountered. The next

30

subsection will cover the algorithms for the standard Real-valued PSO (RPSO) technique for

continuous parameters. Recommended intrinsic parameter values will also be provided for the

reader’s benefit.

2.1.1 Real-valued Particle Swarm Optimization

The defining equations and thought process for this version of PSO are the most natural, and

this is an improved version of the original algorithm presented in [69]. We will use the same

terminology of the Section 2.1 and follow suit from its explanations. Each particle in the swarm

has an associated velocity, location in the solution coordinate system, personal best visited

location (~p), and global best visited location (~g). As stated previously, each particle in the

swarm has two memories: a cognizant memory and a social memory which are affiliated with

the ~p and the ~g vectors, respectively. Naturally, each particle would like to revisit the area near

its previously best seen point. However, the particle is also aware of the best seen point of the

swarm and is torn between the two locations. This is reflected in the equations

~vk+1
i = wk~vki + c1~r

k
1,i ◦

(
~pki − ~xki

)
+ c2~r

k
2,i ◦

(
~gki − ~xki

)
(2.4)

~xk+1
i = ~xki + ~vk+1

i ∆t (2.5)

where equation 2.4 defines the velocity of particle i at iteration k+ 1 and equation 2.5 describes

the position of particle i at iteration k + 1. It also should be noted that the binary operation

~a ◦ ~b in equation 2.4 represents the element-wise vector multiplication for ~a,~b ∈ RN . We list

out the definitions of each component below and provide a simple description of each intrinsic

parameter.

~vk+1
i The N -dimensional velocity vector of particle i at iteration k + 1. This represents the

speed at which particle i is traveling in the solution coordinate system. As the particles

progress in the optimization, the velocity will decrease on average in order to facilitate

local exploration.

~xk+1
i The N -dimensional position vector of particle i at iteration k+1. The values of this vector

literally represent the values of the design variables being optimized, and the final gBest

vector ~g represents the final design values of the optimization.

31

wk The inertial weight. By forcing the particle to continue along its previous trajectory, this

weighting factor forces the particle to overshoot its target. It perpetuates each particle’s

original velocity similarly to inertia observed in physics. With a large inertia weight, the

particle is forced to explore the surrounding area which promotes more global exploration

of the solution space, while a smaller inertial weight allows the particle to make finer

adjustments, promoting more local exploration of the solution space [72, 73, 74].

c1 The nostalgia weight. This is the weight of proportionality which drives the particle to

return to its pBest location ~p. Increasing this relative to c2 results in a swarm of isolated

individuals which have little social interaction, and the end result is quick stagnation [69].

c2 The social weight. This weight controls each particle’s drive to explore regions where other

particle’s have had success. Increasing this relative to c1 motivates the particles to explore

the areas of their neighbors, which in turn can result in premature local convergence.

~rk1,i, ~r
k
2,i N -dimensional random vectors. These parameters manifest the stochastic nature of

PSO, and each component of the N -dimensional vector has a uniform distribution from

[0, 1].

∆t The finite time step. In order to describe the new position of a particle with constant

velocity, one must have knowledge of the time travelled. This is included in equation

2.5 as a formality such that the equation would appear similarly to those in elementary

mechanics describing particle trajectories. In the literature, it is standard to set ∆t = 1

[70]. Changing its value simply scales the velocity, and the other velocity parameters should

be scaled accordingly in order to have a similar performance if one so desires to change

this parameter.

These intrinsic parameters are critical to determine the convergence performance for PSO ap-

plied to general multimodal optimization problems. If not set correctly, then it is possible that

premature convergence upon a local optimum will ensure, and this is to be avoided at all costs.

Table 2.1 provides the recommended values for every parameter in PSO. There are other pa-

rameters not mentioned in the definition list above due to their exclusion in equations 2.4 and

2.5. One parameter is swarm size, and this parameter is typically recommended to be at least

equal to the number of dimensions N . There has not been much research devoted to character-

izing the best choice of swarm size, but a few sources have reported good performance with this

guideline [75]. Another parameter that needs to be set is the maximum number of iterations

imax. In order to have the inertial weight linearly decrease from 0.9 to 0.4, one must provide

imax, as seen in the formula in Table 2.1. We recommend imax = 500 iterations as a starting

point for typical optimization problems in electromagnetics. For extremely multimodal problems

32

Table 2.1: Recommended Values for the Intrinsic Parameters of PSO when used in Electro-
magnetics problems

PSO Parameter Recommended Values

c1 2.0
c2 2.0

Swarm Size (N, 2N)
∆t 1.0

Max Iterations (imax) 500

wk 0.9− 0.5
(

i
imax

)
~vmax

1
2

(~xmax − ~xmin)

or highly-dimensional problems, it may be recommended to use more iterations. Lastly, vmax is

used to clip the particle velocity if it gets too high. This ensures that particles do not fly out

of the solution space by an extremely large distance. It is interesting to note that the original

algorithms before 1998 used vmax in order to ensure global convergence, and much smaller values

were used in order to tune the performance of PSO. However, it was later found that by linearly

decreasing wk one could generalize vmax, which was difficult to tune, to all problems by simply

setting vmax to half the solution space [74].

There have been many different variations of PSO proposed, but many of them either do not

improve performance or they detract from it. Some examples of possible variations tested include

a momentum-less PSO where the inertial weight is set to zero, but this example reportedly had

poor results [69]. Another style of PSO used a local best instead of a global best, where each

particle would remember the best seen position by their immediate neighbors. This provided

good results and seemed more resistant to local optima in comparison to the original versions.

However this version also took much more time to converge [76]. There has been much more

extensive research into improving PSO by adding other operators onto it [77], but the original

algorithm still prevails as the most simple and most applicable to all optimization problems.

The pseudocode for the original algorithm is given in Figure 2.4 for a better understanding of

the full algorithm.

In Figure 2.4, we begin by initializing the particles in the solution space by assigning them a

random location with a uniform distribution from [xmin, xmax]. Their velocities are also randomly

33

Initialize particle positions

Initialize particle velocities

For i = 1 to imax

 For m = 1 to Swarm Size

 Evaluate boundary conditions on xm

 If f(xm) < f(pBestm) then pBestm = xm

End For

For m = 1 to Swarm Size

 If f(xm) < f(gBest) then gBest = xm

 For m = 1 to Swarm Size

 Update particle m's nth velocity component vm,n

 End For

 Update particle m's nth position component xm,n

 End For

 Evaluate particle m's fitness f(xm)

 If xm valid then

 End If

 Else

 f(xm) = 1e20

 Set f(pBestm) = 1e20

End For

Return gBest

1

2

3

4

5

9

6

7

8

13

14

11

12

10

15

18

17

16

19

20

21

22

Pseudocode describing the Real-valued Particle Swarm Algorithm

 If |vm,n| > Vmax,n then vm,n = Vmax,n*sgn(vm,n)

 For n = 1 to N

23

24

 End For

25

Figure 2.4: Pseudocode implementation of the Real-valued Particle Swarm Optimization
technique which minimizes the fitness function

assigned with a uniform distribution from [−~vmax,+~vmax]. Since this is a minimization problem,

we set the initial fitness for each particle extremely high. Ideally, we would set it at ∞, but this

number is not storable in finite sized memory and therefore is set to a high number, 1020.

The next step is to evaluate whether each particle is within the given limits [~xmin, ~xmax]. If

not, there exist several different boundary conditions to keep the particle within these appropri-

ate boundaries. These conditions are often necessary to avoid physically unrealizable systems

or to avoid physically insignificant systems. Some examples might include patch antenna with a

negative width or a patch antenna where the probe feed does not connect to the patch antenna.

These systems either have no meaning or might even force errors in the simulation tools. There-

fore they must be avoided by imposing these boundary conditions. The most typical boundary

conditions are demonstrated in Figure 2.5, and this includes the absorbing, reflecting, damping,

34

x

y

Solution Space

(a) Absorbing

Solution Space
x

y

(b) Reflecting

Solution Space
x

y

(c) Damping

Solution Space
x

y

No Fitness

Evaluation

(d) Invisible

Figure 2.5: Boundary conditions applied to a two-dimensional problem

and invisible boundary conditions. Out of these conditions, the invisible boundary condition has

been recommended due to its demonstrated ability to converge upon the global optima for the

general optimization problems [70].

The RPSO boundary conditions have often been separated into two categories: restricted

and unrestricted boundary conditions. The restricted boundary conditions contain all particles

within the solution space by manipulating their position and velocity, while the unrestricted

conditions allow the particle to fly out of the solution space but assign a bad fitness to those

particles. The absorbing, reflecting, and damping cases are all considered restricted boundary

conditions because they keep the particle within the solution space, as seen in Figure 2.5. The

invisible boundary condition allows the particle to fly outside the solution space but sets the

fitness value for that point at a particularly high number, e.g. 1020. For certain cases where

the global optimum is located near the solution space edge, these boundary conditions can also

decelerate the convergence upon the global optima as shown in [78]. If the global optimum is

located near the edge of the solution space, then using the invisible boundary condition may slow

down the convergence due to a large number of particles flying outside the solution space. There

35

have been other boundary conditions investigated for the standard PSO algorithm including

hybrid boundaries such as the invisible reflecting and the invisible damping boundary condition

[78], but these are not as popular as the four shown above in Figure 2.5.

The pseudocode shown in Figure 2.4 is configured such that it can handle the implementation

of any of the boundary conditions. If one of the restricted boundary conditions is chosen, then

the boundary evaluation alters the position and velocity accordingly. If the invisible boundary

condition is used, then the particle is considered invalid which forces the algorithm to assign a

high fitness to the particle. With this organization one can apply any of the aforementioned

boundary conditions.

The next step in the pseudocode updates the pBest and gBest if the newly tested point has

a better fitness than the current locations. The last block of pseudocode goes through the whole

swarm to update the nth velocity component of particle m using equation 2.4. If a particular

component goes above the nth component of the velocity threshold ~vmax,n, then the velocity

magnitude is set to ~vmax,n and the direction is that of the original velocity. We use this velocity

to find the new location of particle m, where equation 2.5 is used (assuming ∆t = 1).

2.2 Covariance Matrix Adaptation Evolutionary Strategies (CMAES)

The Covariance Matrix Adaptation Evolutionary Strategies (CMAES) technique lies under the

umbrella of Evolutionary Strategies (ES), which has a rich history in its development. ES

was one of the frontrunners in the early developments of Evolutionary Computation (EC), i.e.

nature-inspired optimization. Its development began in the 1960’s when working to design bodies

with minimal drag per volume [79]. When designing a 2D joint plate in turbulent air flow, the

researchers demonstrated that this stochastic procedure outperformed the classical optimization

techniques [80]. With those exciting results, researchers went on to further develop the ES

technique.

As with PSO, the Evolutionary Strategies technique also takes a heuristic approach to opti-

mization. The Evolutionary Strategies works by evolving a population of individuals, where each

36

1.

2.

3.

4.

 members

 members

 members

 members

A parent population is initialized

An offspring population is created from recombination and

mutation applied to parent population

A new parental population is generated through selection

(either comma type or plus type)

After repeating steps 2 and 3 until a stop condition is met, a final

evolved superior population is given

Figure 2.6: Basic evolutionary concept behind Evolutionary Strategies

iteration represents one generation. As time approaches infinity the population will evolve to the

most optimal individuals, as shown in Figure 2.6. New generations are born through operators

known as recombination and mutation. ES also makes use of the evolutionary idea of survival of

the fittest, and this is accomplished through the use of a selection operator. The most typical ES

technique employs the use of Gaussian distributed random numbers to spawn new members of

the population. For CMAES, this distribution can adapt its mean and covariance matrix based

on its previous experience, and this adaptation has been claimed to enhance the performance to

a faster convergence rate than other nature-inspired optimization techniques.

We begin to shed light on the details of ES by first briefly introducing the terminology often

used. Over the course of this text, we have been referring to the parameters inherent to the

algorithm as intrinsic parameters. ES further categorizes this into endogenous parameters and

exogenous parameters which are described below.

Endogenous Parameters

The endogenous parameters control statistical properties of the genetic operators (muta-

tion/selection) and can change throughout the optimization run.

Exogenous Parameters

Exogenous parameters are kept constant in a run and they control the size of parent/offspring

populations, mixing number, as well as selection type.

37

One primary difference between the two parameters are that the endogenous parameters are often

encoded within each of the individuals, while the exogenous parameters are encoded into the

algorithm as a whole. For CMAES, most of the parameters tend to be exogenous in comparison

to other flavors of ES, but these are common ideas within the realm of evolution strategies.

In general, the ES approach has been more mathematically oriented in comparison to other

techniques such as PSO, and we will retain the mathematical formalism while still trying to

maintain accessibility to the reader. Previously, we had stated that the ES algorithm evolves a

population until a final superior generation has been found. At iteration i there are two popu-

lations: a parent and an offspring population, to which we will refer by βip and βio, respectively.

The parent population is made up of µ individuals aim with m ∈ 1, 2, · · · , µ. The offspring pop-

ulation is made up of λ individuals bi` where ` ∈ 1, 2, · · · , λ. Therefore, both populations can be

described as the set of its constituents.

βip =
{
ai1, a

i
2, · · · , aiµ

}
(2.6a)

βio =
{
bi1, b

i
2, · · · , biλ

}
(2.6b)

Each individual (both parent and offspring) are represented by their design values ~xm, fitness

value f(~xm), and their endogenous parameters sm. Therefore aim = {~xim, f(~xim), sim}.

For ES, the three main operations performed on the population guide it towards the supe-

rior locations in the solution coordinate system. These three operators include recombination,

mutation, and selection, which have similar characteristics to the operators seen in Genetic Al-

gorithms (GA). In the most basic sense, recombination shares the information of a given set of

ρ parents (there can be more than two parents), and its ultimate goal is to conserve the good

components of the parents. Mutation is the primary source of any variation in the parameters,

and changing the scale of mutation either allows for a global search or a more refined search.

Lastly, selection directs the population towards the more promising regions in the solution space.

Selection implements the survival-of-the-fittest by choosing the µ best individuals [80].

There are many different ways to envision the movements of the population as they travel

through the solution coordinates. The population centroid 〈~x〉 has often been used in the past to

38

describe the whereabouts and general location of the population [80]. CMAES goes a step further

and adjusts the population by shifting its mean and adapting the Gaussian covariance matrix

throughout the optimization run. At a given iteration i, the location of the mth individual is

given by the Gaussian distribution

~xim ∼ N (〈~x〉i, (σi)2Ci) ∼ 〈~x〉i + σiBiDiN (0, I) (2.7)

where σi is often denoted as the step size, Ci ∈ RN×N is the covariance matrix of the Gaussian

distribution, Bi ∈ RN×N is the matrix of eigenvectors corresponding to Ci, and Di ∈ RN×N is

the diagonalized matrix whose elements are the square root of the eigenvalues of Ci [81]. The

corresponding eigendecomposition of the covariance matrix C is given by

C = BD2BT . (2.8)

At first glance, this representation may seem very abstract, and some interpretation is required in

order to fully understand this representation. In order to simplify the explanation, let us assume

that C = I,∀i. Now a closer examination of equation 2.7 shows that there are only two variables

to control: 〈~x〉i and σ. The variable 〈~x〉i controls the center of the Gaussian distribution while

σ controls the spread of the distribution.

As a simple illustration of CMAES, we depict the movement of a population as it samples

the space in Figure 2.7. We randomly start with an initial 〈~x〉0 and then initialize the other

particles based on a given σ0. The black colored dots represent initialized individuals at i =

0, and the lighter colors represent the progression in iterations. The next centroid 〈~x〉i+1 is

chosen to be equal to the best individual of the offspring population βio, and we arbitrarily set

σi+1 = 0.8σi. The circles demonstrate the isocontours of the Gaussian distribution at iteration

i. This simple algorithm resembles a pattern search algorithm, and of course is not the most

suitable optimization algorithm. However, it provides a pictorial understanding on some of

these parameters involved. It should be noted that the CMAES algorithm encompasses a much

more complicated adaptation process, and it is not only limited to hyperspherical Gaussian

39

f(x,y) = 144.0

f(x,y) = 36.0

f(x,y) = 324.0

x

y

Figure 2.7: Ellipsoidal function f(x, y) = (x/3)2 +y2 being optimized with a simple best-child
evolution strategy. This is a simplified algorithm to explain CMAES.

distributions. In fact, CMAES is able to manipulate the distribution such that the isocontours

would form rotated N -dimensional hyperellipses in the solution space in order to accelerate the

convergence by using a full covariance matrix C. Now that the concepts, objects, and operations

in CMAES have been explained, the focus will shift towards the ES procedure of optimization.

We will proceed in the same order as Figure 2.6. We begin with the initialization of the parent

population β0
p . It must be emphasized that the Evolution Strategies technique is an unbounded

optimization algorithm; it does not require upper and lower bounds on the design parameters.

With this in mind, there are two approaches to the initialization given below [82].

1. Bounded approach. Many times in electromagnetics we would still prefer to keep the

optimization within certain bounds in order to avoid physically unrealizable systems or

repeated solutions which can occur for symmetric systems or in periodic fitness functions.

Therefore, we initialize the parent population randomly with the distribution at the user’s

discretion. This distribution might have more weight towards a certain region if some a

priori knowledge is given about the fitness function.

2. Unbounded approach. For more generality, one may avoid a bounded initialization

approach, and begin the optimization by providing specified starting point ~x0. The user

also provides a ~Σ vector which defines the initial variances of the Gaussian distributions.

One individual is assigned this position ~x0, and the other µ − 1 individuals are assigned

mutated versions of the ~x0 as given by the following.

~x0
m = ~x0 + σBDN (0, I), ∀m ∈ 2, 3, . . . , µ (2.9)

where σ, B, and D are the same as in equation 2.7 and N (0, I) is the N dimensional

40

zero-mean unit-variance Gaussian distribution.

The initialization approach that we take in our implementation of CMAES is a hybrid between

the two and was recommended in [81, 83]. The hybrid approach starts by generating the initial

population centroid 〈~x〉0 with a random position. Since, we do not assume any a priori knowledge

of the fitness function for our optimization problems in this thesis, we use a uniform distribution

for each component of 〈~x〉0 with ~xmin and ~xmax as our lower and upper bounds. The last part

to define is the covariance matrix C of the Gaussian distribution. Typically, a good initial

distribution will include the global extrema within ±3σi + 〈x〉0i for every dimension, where σi

is the standard deviation of the initial Gaussian distribution [83]. Therefore, since we assume

that the global extrema is located within the hypercube defined by ~xmax and ~xmin, we assign the

following parameters [81].

σ0 = max
i∈N̄

(
~xmax − ~xmin

3

)
(2.10a)

B = I (2.10b)

D = diag

(
~xmax − ~xmin

σ0

)
(2.10c)

The diag(·) function represents the assignment of the diagonal elements to the vector elements

within the parentheses. The distribution is now completely defined, and we can generate the λ

offspring for iteration 0 using this distribution. It has also been recommended to use

λ = 4 + b3 · ln(N)c (2.11a)

µ = bλ/2c (2.11b)

to start as a minimum population to optimize the fitness function [81, 84]. In cases of extremely

multimodal functions, a higher offspring size may be required. Therefore, step 1 in Figure 2.6

has been accomplished. A new parent and a new offspring generation β1
o is to be generated. The

steps that proceed are repeated until a terminating condition is reached.

Selection is the operator which provides the parent population βp from the existing popula-

41

tions. It is a deterministic operator, and simply takes the µ best individuals based on their fitness

from some specified population. In ES there have been two common types of selection: plus-type

which is often represented by (µ + λ)-ES and comma-type which is represented by (µ, λ). The

(µ + λ)-ES applies selection to both the parent population βip and the offspring population βio

to form the new parent population βi+1
p . In this algorithm it would be possible for certain in-

dividuals to live throughout the entire optimization run without dying, and this has often been

referred to as elitism [80]. The (µ, λ)-ES only applies selection to the offspring population βio to

create the new parent population βi+1
p . Obviously, one stipulation in the comma-selection is that

λ > µ, and it has been commented that this selection method is less susceptible to local optima

while suffering slower convergence [79, 80, 82]. CMAES most often utilizes the (µ, λ) strategy,

and it applies both selection and recombination in one operation.

Once the new parent population βi+1
p is created, recombination can be applied on its con-

stituents in order to generate a new offspring population βi+1
o . Recombination takes certain

information from the parent population in order to create a new offspring population. For a

new offspring individual bi+1
m , a set of ρ individuals from βi+1

p are chosen to use as parents. The

parameter ρ is often denoted when declaring the ES algorithm by (µ/ρ + λ) or (µ/ρ, λ). The

recombination operation is then applied to the parent individuals in order to create bi+1
m . The

typical ES programs have either applied discrete recombination or intermediate recombination.

In the discrete recombination, the offspring randomly chooses components from the ρ parents for

new design parameter values. In intermediate recombination, each component of the offspring’s

~x vector is assigned the arithmetic mean of the ρ parents [79, 80]. However, in CMAES recom-

bination takes place through the assignment of the new population centroid 〈~x〉i+1. First the λ

offspring of βio are sorted by fitness from lowest (m = 1) to highest (m = λ). The the centroid

is updated by the assignment

〈~x〉i+1 =

µ∑
m=1

wm~x
i
m (2.12)

42

0 5 10 15
0

0.1

0.2

0.3

0.4

0.5

Sorted Individual Index m

W
ei

gh
t w

m

µ = 5
µ = 10
µ = 15

Figure 2.8: Plot of the weights for finding the new population centroid 〈~x〉i+1 using equa-
tion 2.13

where the weights are assigned the following values.

wm =
log2(µ+ 0.5)− log2(m)∑µ
n=1 (log2(µ+ 0.5)− log2(j))

(2.13)

In our previous simple example, we had found the mean by assigning it the same position

as the best offspring location, but these update equations are weighted averages of the µ best

performing offspring. It should be noted that the weights are distributed such that
∑µ

1 wm = 1.

Figure 2.8 plots some values for the cases where µ = 5, 10, 15 in order to demonstrate some

properties of these weights. Our expectation is that the best individuals are weighted most

heavily, and indeed Figure 2.8 confirms our expectations. The weight decreases as the index m

increases because the fitness worsens as m increases, thereby placing more emphasis on the better

individuals. Equation 2.13 applies both selection and recombination to the offspring population

βio. Selection is done by the truncation of all other individuals; the summation only includes the

first µ individuals and is independent of the others. Since equation 2.13 also takes the weighted

average of the individuals, it has been termed as a weighted intermediate recombination [83].

At this stage, the new centroid has been accounted for, but the covariance matrix still must

be updated. There are a few other terms that must be defined in order to proceed. They are

43

given in the formulas below [81, 84].

µeff =

(
‖~w‖1

‖~w‖2

)2

=

(
µ∑

m=1

w2
m

)−1

(2.14a)

cσ =
µeff + 2

N + µeff + 3
(2.14b)

dσ = 1 + 2 max

(
0,

√
µeff − 1

N + 1

)
+ cσ (2.14c)

cc =
4

N + 4
(2.14d)

ccov =
2

µeff (N +
√

2)2
+

(
1− 1

µeff

)
min

(
1,

2µeff − 1

(N + 2)2 + µeff

)
(2.14e)

None of these parameters change during the course of the optimization run, and furthermore

they only depend on N and µ. The parameters are extremely complicated and are used to

enable CMAES for a variety of different applications. The variance effective selection mass

µeff is used to normalize the covariance matrix, and it also represents the effective number of

offspring that account for the newly generated mean. The parameters cσ and dσ are known as

the step-size learning rate and the step-size damping factor, respectively. These two factors are

used to control the changes in step size based on a given number of dimensions N and parent

population size µ. The next parameter cc controls the amount of historical information that is

retained when adjusting the covariance matrix C. The variable ccov controls the rate of change

for the covariance matrix [81, 84].

The next step is to find the next generation’s step size σi+1 and covariance matrix Ci+1. The

first step to find the new step size begins by computing the conjugate evolution path ~pσ, which

keeps track of the distance traveled by the population centroid.

~pi+1
σ = (1− cσ)~piσ +

√
cσ(2− cσ)

µeff
σg

(Ci)−1/2
(
〈~x〉i+1 − 〈~x〉i

)
(2.15a)

σi+1 = σi exp

(
cσ
dσ

(
‖~pi+1

σ ‖
E {‖N (0, I)‖}

− 1

))
(2.15b)

Since B and D are known, the computation of (Ci)−1/2 lends easily to the simplified form

44

C−1/2 = BD−1BT . Since D is a diagonal matrix, its inverse is rather simple as given by

D−1 =


1
d11

0 0

0
. . . 0

0 0 1
dnn

 (2.16)

which is much easier to compute in comparison to the inverse. The last term requiring further

discussion in equation 2.15b is E {‖N (0, I)‖}, which is the expected value of the euclidean vector

norm of a normally distributed random vector. Its can be calculated by

E {‖N (0, I)‖} =

√
2Γ
(
N+1

2

)
Γ
(
N
2

) ≈
√
N

(
1− 1

4N
+

1

21N2

)
(2.17)

This term provides a reference in order to scale the step size σi+1 upwards or downwards. The

last component needed is the covariance matrix of the new generation’s Gaussian distribution.

Computation of the covariance matrix Ci+1 follows likewise as shown by

~pi+1
c = (1− cc)~pic +

√
cc(2− cc)

µeff
σg

(
〈~x〉i+1 − 〈~x〉i

)
(2.18a)

Ci+1 = (1− ccov)Ci +
ccov
µeff

~pi+1
c (~pi+1

c)T

+

(
1− 1

µeff

)
ccov

(σi)2

µ∑
m=1

(
~xi+1
m − 〈~x〉i

) (
~xi+1
m − 〈~x〉i

)T
(2.18b)

which utilizes the variables defined in equation 2.14. These formulas have been designed such

that CMAES will optimize a wide range of problems, and equation 2.18b has two major update

terms. The covariance Ci+1 inherently is an update from previous history, hence the first term

involving the previous iteration’s covariance matrix Ci. The second term involves the evolution

path vector ~pi+1
c and has been termed the rank one update. This update elongates the covariance

matrix along the path that the mean has traveled. A longer distance traveled by the mean

〈~x〉i+1−〈~x〉i inherently implies a bigger change in the covariance matrix update. The last term has

been denoted as the rank-µ update, and this particular term re-orients the Gaussian distribution

in order to move toward the direction of the function minimum as well as elongate the ellipse

45

% Initialize the distribution parameters

 For m = 1 to

 Generate child with

 Evaluate mth child fitness f(xm)

 Compute the new

 Compute the new

 If f(x1) < f(bestPosition) then bestPosition = x1

Return bestPosition

 Sort the children by f(xm)

 End For

 Compute the new

 Compute new mean from first parents

 Compute the new

Initialize

For i = 0 to imax-1

1

2

3

4

5

9

6

7

8

13

14

11

12

10

15

18

17

16

19

Pseudocode describing the Covariance Matrix Adaptation Evolutionary Strategies

End For

 Decompose into its eigenvectors and eigenvalues

Mutation

Stage

Selection/Recombination

Stage

Initialize mean vector

20

Figure 2.9: Pseudocode implementation of the Covariance Matrix Adaptation Evolution
Strategy technique which minimizes the fitness function

towards the direction of travel [81, 84]. It should be noted also that the ~xi+1
m terms refer to the

parents of the new generation βi+1
p , which were the fittest selection from the child generation βio.

The offspring mean however corresponds to that of βio, which may be counterintuitive. However

it was demonstrated in [81] that this mean 〈~x〉i produces the correctly directed ellipse in order

to predict the location of the function minimum based on the points sampled. In fact, it has also

been shown that the covariance matrix roughly approximates the inverse Hessian function for

different fitness functions [84, 68]. By using this estimate, the Gaussian distribution is therefore

directed towards those points with a predicted zero gradient.

The pseudocode for the CMAES algorithm is shown in Figure 2.9. The previous discussions

have already provided some information most of the steps, and this provides an easy-to-follow

summary of all the steps. The only minor point that was not discussed was the initialization

of the conjugate evolution path and the evolution path. As shown in the pseudocode, these

parameters are both initialized to zero by ~p 0
σ = 0 and ~p 0

c = 0 on line 2. Line 1 is simply a

comment and should be ignored. In this implementation, the best point seen thus far in the

46

Table 2.2: Recommended values for the CMAES technique

CMAES Parameter Recommended Values

λ 4 + b3 ln(N)c
µ bλ/2c
σ0 max(~xmax − ~xmin)/3

optimization run is stored in a variable (array) named bestPosition. This variable is the final

output in this pseudocode implementation as the final values for the design parameters.

In this section, a brief introduction to the concept of Evolutionary Strategies was given, and

an implementation of the CMAES version was provided. This algorithm was developed not

only to improve convergence over other competing techniques but also to minimize the number

of parameters defined by the user. Recommended values for those parameters are given in

Table 2.2. As seen from the discussion, this algorithm has been historically more analytical and

mathematical in nature in comparison to other techniques such as PSO. It also has been claimed

to have improved convergence, and in this thesis we will compare this new technique to verify

these claims.

2.3 Applications in Constrained Optimization Problems

Many design problems in engineering often have physical limitations which imply some type of

constraints. These design constraints are often due to space or weight limitations as well other

various performance issues. Constraints often come in the form of inequalities and constraint

equations [85]. Without a proper formulation, the optimization problem can become increasingly

difficult due to the limited search space. Therefore these components deserve some attention

when working to optimize several classes of antenna optimization problems.

In the beginning of this chapter, the terms bounded optimization techniques and constrained

optimization problems were introduced and delineated. While these terms describe two different

pieces of the optimization story, we use these terms boundary and constraint to describe two dif-

ferent types of inequalities. This dichotomy distinguishes between components that are necessary

47

in bounded optimization techniques and those that are applied to all optimization techniques.

The inequalities that form the hypercube termed the solution space are given as

~xmax ≤ ~x ≤ ~xmin (2.19)

where ~xmax and ~xmin form the edges of the solution space. As seen in the previous sections, these

boundaries are required in PSO, while in CMAES and ES they are supplementary because they

are unbounded optimization techniques. An unbounded approach has been applied to many types

of problems and provides more generality to the optimization problem. However most antenna

design problems have physical upper and lower limits on their dimensions. Therefore these

boundaries will be included in the algorithm through various methods in this thesis. Constraints

are slightly different inequalities involving more than one design parameter. Using a generalized

notation as seen in [85, 86], these constraints can be written as

~g(~x) ≤ 0 (2.20)

which captures both types of inequalities through gi(~x) ≤ 0 and −gi(~x) ≤ 0. It is general enough

to include equalities h(~x) = 0 as well by defining gi(~x) = h(~x) and gi+1(~x) = −h(~x) to finally

use as gi(~x) ≤ 0 and gi+1(~x) ≤ 0. To summarize, these constraints require attention for both

bounded and unbounded optimization techniques. However, the boundaries are only required for

bounded optimization techniques.

Some terminology has become standard in literature [87, 88, 89, 90] to describe the regions

within the solution space S. The feasible region F can be defined as

F = {~x |~g(~x) ≤ 0, ~xmin ≤ ~x ≤ ~xmax} (2.21)

which can be described as the set of points in the solution space which satisfy the constraints,

and hence F ⊆ S. Note also that another region is the infeasible region I ⊆ S, which can

be defined by I = S ∩ F . The region outside of the hypercube will simply be referred to the

out-of-bounds region S. These regions can be visualized for both two and three dimensional

48

Figure 2.10: Visualization of the Feasible and Infeasible regions

spaces as seen in Figure 2.10.

There are a variety of methods that incorporate the constraints into the optimizer. One

technique that has been suggested changes the algorithm’s initialization [91] in order to force

the initial points to be located within F . This was originally proposed for use in PSO, but this

idea could be extended to other algorithms such as GA or CMAES. Others have used used the

constraint equations as other fitness parameters in a multi-objective optimization environment.

The authors then applied a multi-objective version of PSO to the optimization problem. Another

method used for GA as well as other Evolutionary Techniques add a penalty function into

the fitness function [87, 88, 86]. This in turn converts the constrained optimization into an

unconstrained one. Using this approach, another term pc(~x) is simply added onto the original

fitness function as

f(~x) = f0(~x) + pc(~x) (2.22)

where f0(~x) is the term which describes the fitness of the antenna alone, i.e. the original fitness

function. For many of the optimization runs used in this thesis, the constraint penalty function

pc(~x) =


0 if ~x ∈ F

1020 if ~x /∈ F
(2.23)

49

is used, which simply increases the fitness to a large number if outside the feasible region. This

may not always be the best penalty function because it does not provide any information as to

the location of the feasible region. Others actually implement the constraint equations gi(~x) into

pc(~x) [89], and this has been preferred because it can help guide the optimizer towards F . We

use the stepped penalty approach for ease of implementation, and it fits naturally into PSO since

this has the same appearance as the invisible condition. It should also be pointed out that one

advantage of penalty functions is that they can be applied to every technique, and therefore they

form a widely usable approach in handling constraints. The stepped constraint penalty function

was applied to the optimization problems involving either PSO or CMAES in this thesis.

CMAES and other unbounded techniques also have to incorporate the design boundaries

~xmax and ~xmin into their algorithm. Whenever running CMAES for optimization problems we

incorporate another boundary penalty function pb(~x). The newly expanded fitness function f(~x)

would then become

f(~x) = f0(~x) + pc(~x) + pb(~x) (2.24)

where pb(~x) incorporates the boundaries of the design. A recommended boundary penalty func-

tion has been given by

pb(~x) =


0 if ~x ∈ S

‖~x− ~xctr‖ if ~x /∈ S
(2.25)

where ~xctr is the center of the hypercube given by ~xctr = (~xmin+~xmax)/2. By adding this penalty

function, the CMAES algorithm naturally is drawn to the solution space S. Without this added

penalty function, the population of individuals is free to roam at any point in space, and this

can be undesirable. Again it is emphasized that this does not have to be done for PSO because

they are bounded algorithms and incorporate the design limits ~xmin and ~xmax using its boundary

conditions. Therefore pb(~x) = 0 for the PSO technique.

When constraints are introduced into an optimization, it becomes increasingly difficult for

50

optimizer to find the feasible region. In fact, the difficulty increases as the number of dimensions

increases. Since the search space is limited by the constraints, the probability that the next test

point will fall in S is dependent on the number of dimensions N . This can be demonstrated with

a simple probability exercise. If we assume the distribution of the next test point is uniform

throughout the solution space, and then the probability that the next test point will fall in the

feasible space is the ratio of the volume of F to the volume of S. If we further assume for

simplicity that the region F is a hypercube with sides ∆si,∀i ∈ 1, . . . , N then the probability is

simplified to the ratio of each side of the two hypercubes as

P{~x ∈ F} =

∫
F · · ·

∫
F dx1 · · · dxN∫

S · · ·
∫
S dx1 · · · dxN

=
∆s1 · · ·∆sN
∆x1 · · ·∆xN

(2.26)

where ∆xi = xmax,i − xmin,i. We observe that the ratio ∆si/∆xi = pi ≤ 1, due to F ⊆ S. This

implies that for greater dimensions, the probability either decreases or stays equal due to the

product of another since p ≤ 1. In general the distribution of the next test point is not uniform,

but this helps visualize the difficulty that the constraints place on the optimizer. From this we

can see the importance and the challenge that a constrained optimization problem places on

the designer and therefore it must be considered in the algorithm in order to guarantee good

convergence.

2.4 Convergence Analysis using Mathematical Functions

Convergence is always an important issue when discussing optimization methods, and one of

the theoretical advantages of the classical optimization techniques is that one can prove their

convergence. By analytically demonstrating their convergence, one can also compare how fast

they converge towards the optima. However, analytical proofs on the rate of convergence are

not typically available with the stochastic optimization algorithms, and convergence towards the

global optimum in some cases is impossible to prove. Some have claimed to prove that certain

51

techniques, such as Evolution Strategies, have a given convergence

P
{

lim
i→∞

f(~xi) = f ∗
}

= 1 (2.27)

where f ∗ is the global optima value for a given fitness function [79]. However, this does not

describe the speed at which an algorithm will find the global optima. Even a completely random

search of the search space will eventually find the global optimum after ∞ iterations. Other

researchers have demonstrated parameters related to convergence such as the probability of a

successful mutation analytically for specific optimization problems [79]. Again this does not prove

its convergence for all problems. Therefore this does not provide much worth for convergence

purposes other than some insight on the best values for the intrinsic parameters of a given

algorithm.

However, the lack of these proofs does not necessarily take away from their value in global

optimization problems, and their usefulness has been proven in a wide range of applications

and research projects. Indeed, the nature-inspired algorithms are not always guaranteed global

convergence, but researchers have observed that these techniques demonstrate good global con-

vergence on the average case. It is obvious that the pure random search would eventually find

the global optima, and these techniques lie somewhere in between a pure random search and

their more analytical gradient-based counterparts. They simply exploit the history of points

with good fitness and adapt the next testing points’ distribution in order to emphasize the areas

with good history.

Therefore many researchers have resorted to comparison of these techniques by applying them

to several different types of mathematical functions. Some are unimodal and ill-conditioned while

others are highly multimodal. It is necessary to compare a wide variety of different functions

in order to test their performance. In this section we wanted to introduce this concept as well

as the typical curves seen in these optimizations. For example, the two dimensional Schwefel

52

Table 2.3: Intrinsic Parameters Used to Optimize the 2D Schwefel Function

PSO Parameter Values Used

c1 2.0
c2 2.0

Swarm Size 4
∆t 1.0

Max Iterations (imax) 2000

wk 0.9− 0.5
(

i
imax

)
~vmax

1
2

(~xmax − ~xmin)

function is given in Figure 2.11. This function can be defined as

fschwefel(~x) = 418.9828872724339 ·N −
N∑
i=1

xi sin(
√
|xi|) (2.28)

which has a global minimum at xi = 420.96874636,∀i ∈ 1, . . . , N [92]. This optimization is

typically quite difficult for the PSO algorithm, which can fall prey to many of the Schwefel

function’s local minima. An optimization run using PSO was applied to the two-dimensional

Schwefel function, and the results of the optimization run are also shown in 2.11. The solution

space boundaries are [−500, 500]n, and the intrinsic parameters for the PSO algorithm used in

this run are shown in Table 2.3. We applied more iterations than the recommended values given

in Table 2.1 because the Schwefel function is relatively fast to compute. In electromagnetics

problems, this is not usually the case, and therefore less iterations are recommended (usually

around 500) in order to obtain a solution within a reasonable amount of time. There are two

plots that show the results of the optimization run. In Figure 2.11b, two curves are given: the

average fitness and the global best fitness for one run. This is a typical plot seen for PSO, and

the global best fitness is nothing more than a plot of the fitness evaluation at gBest f(~xig) for

iteration i. The average fitness is simply the average fitness of every particle (or individual) at

iteration i given by

favg =
1

M

M∑
m=1

f(~xim) (2.29)

53

xy

f(
x,
y)

-500

0

500

-500

0

500
0

500

1000

1500

2000

(a) Topology of Schwefel Function

0 500 1000 1500 2000
10

−15

10
−10

10
−5

10
0

10
5

Iteration

F
itn

es
s

Global Best
Average

(b) 1 Run

Curves with Premature
Convergence

(c) 50 Runs

Figure 2.11: Application of PSO on a 2-dimensional Schwefel function

54

where M is either equal to the Swarm Size (PSO) or λ (CMAES). Now the data seen in Figure

2.11b are only for 1 run, while the Figure 2.11c shows the global best fitness for all 50 runs in

one plot. In order to prove that an algorithm is robust, it is often required that one demonstrate

its effectiveness for several independent runs. In many cases people provide a 50-run average in

order to demonstrate the algorithm’s performance, but this may not be effective because some

runs might have converged upon a local optima prematurely as seen in Figure 2.11c. The values

between the premature runs and the optimized runs are different by several orders of magnitude,

and thus any averaging would force the averaged value to be equal to the premature values.

Therefore this is not always the best way to depict this information and should be avoided

unless no premature runs exist. This is why the transparent plot shown in Figure 2.11c provides

a better picture; one can see the results for all runs in one plot. The darker lines occur when

more than one curve sits atop one another. For this optimization, 17 runs converged prematurely,

while the other 33 runs found the global optimum at x∗i = 420.96874636,∀i ∈ 1, . . . , N . It should

be noted that this function should have a value of zero at ~x∗, but the value calculated at ~x∗ is

roughly 4.55 × 10−13 due to some truncation errors. Lastly, we show several different methods

for calculating the average convergence over 50 runs in Figure 2.12. The problematic method

is shown in Figure 2.12b, where the premature curves take over the converged runs. Another

proposed way to plot the average convergence is by excluding the premature curves from the

average as shown in Figure 2.12c. This provides a good picture that demonstrates the average

curve of a PSO run for the Schwefel function and is compared to the 50 run plot in Figure 2.12d.

In summary, convergence is a difficult thing to prove for every problem in the world of

stochastic global optimizers. Therefore comparison between different techniques is made by

examining their convergence for a library of functions. The Schwefel function was provided as an

example, and several representative curves were explained. These curves will be quite commonly

used throughout this thesis to discuss the convergence of a particular run, and some explanation

was needed in order to proceed. While global convergence may not be guaranteed for every run

in these algorithms, they provide good convergence on the average case scenario.

55

Curves with Premature
Convergence

(a) All 50 Runs Displayed

0 500 1000 1500 2000
10

−15

10
−10

10
−5

10
0

10
5

F
itn

es
s

Iteration

(b) Averaging with premature conver-
gence curves included in the average

0 500 1000 1500 2000
10

−15

10
−10

10
−5

10
0

10
5

F
itn

es
s

Iteration

(c) Averaging without the premature
convergence curves

One run out
of 50 Runs

Average over
50 Runs

(d) Comparison of the 50 runs with the
averaging in (c)

Figure 2.12: Comparison of Different Averaging Procedures

56

2.5 Implementation

The algorithms for both PSO and CMAES are quite simple to finally implement into a program,

and several program interfaces were designed in order for the algorithms to communicate with

the electromagnetic solvers. The numerical engines that were used throughout this work include

HFSS and IE3D. The algorithms for both PSO and CMAES were implemented in Matlab due

to its ease in implementation as well as versatility. The baseline CMAES code was also provided

by Prof. A. Hoorfar [93] and was further edited. Some of the optimization runs for PSO and

HFSS used a VB-scripts implementation, and more on this will be discussed for those particular

optimization runs. These codes were run on a server equipped with two quad-core Intel Xeon

2.5 GHz Processors with 32 GB of RAM. Most of the optimization runs in this thesis used a

serial computation configuration, where each test point was calculated one-at-a-time.

These algorithms also lend to easy parallelization of the code in order to drastically reduce

computation time. By assigning k nodes to evaluate the fitness function, the algorithm experi-

ences a near-linear increase in speed. Clearly the situation where every particle (or children for

CMAES) has a designated node represents the fastest and most efficient possible implementation

of the nodes, but this is not the only configuration to implement the parallel solution. For this

algorithm, there is a small amount of sequential code (roughly 0.1% to 1%), and therefore one

can predict the process acceleration by Amdahls Law, which is given by

A (np) =
np

1 + (np − 1)f
(2.30)

where A represents the acceleration (or speedup) of the program, np is the number of nodes (or

processors) used, and f is the sequential fraction of the code. Since f is approximately zero in

all practical applications, one can see that a linear increase in acceleration can occur by using

parallelized coding. One can also implement this algorithm as a multi-threaded program on one

computer, but the speedup is not linear in comparison to using independent processors for the

computation. Our code also incorporated multi-threaded capabilities for the later runs, and only

some of the optimization runs use this for program acceleration.

57

The program implemented for CMAES and PSO has many added functionalities. First, it can

work with any provided external fitness function. In order to run a non-Matlab function, a Matlab

function interface must be created in order to output the correct fitness value. The functionality

in Matlab streamlines the process so that little effort must be used to create these interfaces.

Once a fitness function has been developed, the program starts with the default recommended

values as given in the previous tables 2.1 and 2.2. If other values for these parameters are desired

then the user can change the first few lines of code in order to implement those changes. Once

completed, the user can run the full global optimization on the desired fitness function and find

a solution.

58

